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Abstract 

The highly-publicized division error in the Pentium has emphasized the importance of formal 
verification of arithmetic operations. Symbolic model checking techniques based on binary 
decision diagrams (BDDs) have been successful in verifying control logic. However, lack of 
proper representation for functions that map boolean vectors into integers has prevented 
this technique from being used for verifying arithmetic circuits. 
We have used hybrid decision diagrams to represent the integer functions that occur in 
the arithmetic circuit verification. For the state variables corresponding to data bits, our 
representation behaves like a binary moment diagram (BMD) while for the state variables 
corresponding to control signals, it behaves like a multi-terminal BDD (MTBDD). By using 
this representation, we are able to handle circuits with both control logic and wide data 
paths. 
We have extended the symbolic model checking system SMV so that it can also handle 
properties involving relationships among data words. In the original SMV system, atomic 
formulas could only contain state variables. In the extended system, we allow atomic for- 
mulas to be equations or inequalities between expressions as well. These expressions are 
represented as hybrid decision diagrams. 
The extended model checking system enables us to verify circuits for division and square 
root computation that are based on the SRT algorithm used by the Pentium. We are able 
to handle both the control logic and the data paths. The total number of state variables 
exceeds 600 (which is much larger than any circuit previously checked by SMV). 



1.    Introduction 

Proving the correctness of arithmetic operations has always been an important problem. The 
importance of this problem has been recently emphasized by the highly-publicized division 
error in the Pentium. In order to verify such circuits, it is necessary to represent and 
manipulate functions that map boolean vectors to integer values. In this paper, we describe 
how to represent and manipulate such functions efficiently using Multi-Terminal Binary 
Decision Diagrams (MTBDDs) [8]. An MTBDD is like an ordinary Binary Decision Diagram 
(BDD)[3] except that the terminal nodes can be arbitrary integer values instead of just 0 
and 1. We have also investigated a technique for representing such integer valued functions 
by BDD arrays. Unfortunately, both representations have problems when they are used 
for verifying arithmetic circuits. For the functions that arise in this type of application, the 
number of possible values is exponential in the number of bits. Therefore, the MTBDDs also 
have exponential size. Since the BDD size for the middle bit of a combinational multiplier 
is exponential in the length of its operands, the BDD array representation is exponential for 
multiplication. Moreover, arithmetic operations on BDD arrays are very expensive. 

Bryant and Chen have developed another representation called the Binary Moment Dia- 
gram (BMD)[4]. They use the expansion / = f\x=0 + xf, where /' is equal to f\x=1 - f\x=0, 
instead of the Shannon expansion. This gives a compact representation for certain functions 
that have exponential size MTBDDs. They have used this word level representation to verify 
the data paths of some arithmetic circuits. The BMD representation for both the circuit 
and the specification are constructed and compared. The circuit is correct if both BMDs are 
exactly the same. However, depending on the implementation and the control logic, there 
can be cases in which the circuit is correct but the BMDs are not identical. Another problem 
is that this approach cannot handle inequalities. Thus, it is impossible to check some of the 
properties that are needed in order to avoid the Pentium error. 

We first show that the BMD of a function is the MTBDD that results from applying 
the inverse Reed-Muller transformation [12] to the function. The transformation can be 
computed using the techniques that we have previously developed for manipulating large 
matrices [8]. The transformation matrix in this case is the Kronecker product [2] of a 
number of identical 2x2 matrices. We show that the Kronecker products of other 2x2 
matrices behave in a similar way. In fact, the transformations obtained from Kronecker 
products of other matrices will in many cases be more concise than the BMD. We have 
further generalized this idea so that the transformation matrix can be the Kronecker product 
of different matrices. In this way, we obtain a representation, called the Hybrid Decision 
Diagram (HDD), that is more concise than either the MTBDD or the BMD. In addition to 
algorithms for performing arithmetic operations, we have developed an efficient algorithm to 
compute the set of variable assignments that satisfy an arithmetic relation. For the class of 
linear functions, which includes many of the functions that occur in practice, such operations 
are guaranteed to have complexity that is polynomial in the width of the data words. 

Our representation for functions that map boolean vectors into the integers enables us 
to extend temporal logic model checking [6, 7] so that it can handle arithmetic circuits. In 
traditional model checking systems, specifications are expressed in a propositional temporal 
logic, and circuit designs and protocols are modeled as state-transition systems. An efficient 



search procedure is used to determine automatically if the specifications are satisfied by the 
transition systems. The main disadvantage of this approach is the state explosion which can 
occur if the system being verified has many components that can make transitions in parallel. 
Recently, the size of the transition systems that can be verified by model checking techniques 
has increased dramatically because of the use of BDDs [5]. Although such symbolic model 
checking techniques have been successful in verifying control logic, these techniques cannot 
be directly used for verifying arithmetic circuits. 

One of the main reasons that the symbolic model checking systems cannot handle arith- 
metic circuits is the lack of a concise representation for expressions that involve words with 
integer values. We have used hybrid decision diagrams to represent the integer functions 
that occur in the arithmetic circuit verification. For the state variables corresponding to 
data bits, our representation behaves like a BMD while for the state variables corresponding 
to control signals, it behaves like an MTBDD. By using this representation, we are able to 
handle circuits with both control logic and wide data paths. We have extended the symbolic 
model checking system SMV [11] so that it can also handle properties involving relationships 
among data words. In the original SMV system, atomic formulas could only contain state 
variables. In the extended system, we allow atomic formulas to be equations or inequalities 
between expressions as well. These expressions are represented as hybrid decision diagrams. 

In the word level model checking system, propositions denoting nodes in circuits are repre- 
sented as BDDs and are computed in exactly the same way as in the original symbolic model 
checking system. Words are arrays of propositions, each of which corresponds to a single 
bit. Expressions are composed of arithmetic operations applied to words. Hybrid decision 
diagrams can be computed for words and expressions using the algorithms for arithmetic 
operations. Atomic formulas can be relations between expressions, and their BDD repre- 
sentations can be computed by the algorithm that handles arithmetic relations. After the 
BDD representations for the atomic formulas are generated, the BDDs for static formulas 
and temporal formulas are computed in the same way as in ordinary model checking. In 
particular, the fixpoint computations are exactly the same in both cases. 

By using the word level model checking system, we have successfully verified circuits for 
division and square root computation that are based on the SRT algorithm used by the 
Pentium. We are able to handle both the control logic and the data paths. All of the 
states in the finite state machine for the control logic have been verified. Moreover, we have 
proved invariant properties that guarantee the correctness of the data values and prevent 
overflows. The total number of state variables exceeds 600 (which is much larger than any 
circuit previously checked by SMV). 

This paper is organized as follows: In Section 2, we discuss different techniques for rep- 
resenting functions that map boolean vectors into the integers. In Section 3, we give the 
logic that is used for specifying the properties involving the data values. In this section, we 
also describe how formulas can be represented by a special class of hybrid decision diagrams. 
In Sections 4 and 5 algorithms for handling arithmetic operations and arithmetic relations 
are given. Section 4 gives the algorithms for computing addition, multiplication and the 
if-then-else operation for this representation. Section 5 gives an algorithm that com- 
putes the BDD representation for the set of variable assignments that satisfy an equation or 
an inequality. In Section 6, we discuss how the word level model checking is performed. We 



illustrate the power of our technique in Section 7 by showing how word level model checking 
can be used to verify a division circuit based on the radix-4 SRT algorithm that is similar to 
the one used by the Pentium. The paper concludes in Section 8 with a discussion of possible 
future research directions. 

2.     Hybrid Decision Diagrams 

Ordered binary decision diagrams (BDDs) are a canonical representation for boolean for- 
mulas proposed by Bryant [3]. They are often substantially more compact than traditional 
normal forms such as conjunctive normal form and disjunctive normal form. They can also 
be manipulated very efficiently. Hence, BDDs have become widely used for a variety of 
CAD applications, including symbolic simulation, verification of combinational logic and, 
more recently, verification of sequential circuits. 

A BDD is similar to a binary decision tree, except that its structure is a directed acyclic 
graph rather than a tree, and there is a strict total order placed on the occurrence of 
variables as one traverses the graph from root to leaf. Algorithms of linear complexity exist 
for computing BDD representations of ->/ and fVg from the BDDs for the formulas / and g. 

Let / : Bm —* Z be a function that maps boolean vectors of length m into integers. 
Suppose ni,..., njv are the possible values of /. The function / partitions the space Bm 

of boolean vectors into N sets {S\, • ■ ■, SN}, such that Si = { x | f(x) = Hi}. Let /; be 
the characteristic function of Si, we say that / is in normal form if f(x) is represented as 
Y^iLi fi{%) ' ni- This sum can be represented as a BDD with integers as its terminal nodes. 
We call such DAGs Multi-Terminal BDDs (MTBDDs) [8, 1]. 

Let / : Bm —* Z be a function that maps boolean vectors of length m into integers. 
Suppose ni,... ,njv are the possible values of /. The function / partitions the space Bm 

of boolean vectors into N sets {Si, • • •, SAT}, such that Si = { x \ f(x) = n,- }. Let /; be 
the characteristic function of Si, we say that / is in normal form if f(x) is represented as 
YliLi fi(x) • ni- This sum can be represented as a BDD with integers as its terminal nodes. 
We call such DAGs Multi-Terminal BDDs (MTBDDs) [8, 1]. 

Any arithmetic operation 0 on MTBDDs can be performed in the following way. There is 
an efficient algorithm that computes the operation in time linear to the sizes of the MTBDDs 
of both operands. 

h(x)   =   f(x)Qg(x) 
N N' 

i=l i=i 

JV   N' 

i=l 3=1 

N" 

=   YJ        V      fi(x)9j(x)n" 
fc=l    niQn'—n'l 

Functions that map boolean vectors into the integers can also be represented as arrays 
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of BDDs. These BDDs have boolean values and each corresponds to one bit of the binary 
representation of the function value. In general, it is quite expensive to perform operations 
using this representation. 

Let M be a 2k x 2l matrix over Z. It is easy to see that M can be represented as a 
function M : Bk+l —> Z, such that Mij — M(x,y), where x is the bit vector for i and y is 
the bit vector for j. Therefore, matrices with integer values can be represented as integer 
valued functions using the representation shown above. We can also perform various matrix 
operations using our MTBDD representation. In particular, matrix multiplication can be 
computed in the following way: Suppose that two matrices A and B have dimensions 2k x 21 

and 2l x 2m, respectively. Let C — A x B be the product of A and B, then C will have 
dimension 2k x 2m. If we treat A and B as integer-valued functions, we can compute the 

product matrix C as 
C(x,z) = YdA{x,y)B{y,z), 

y 

where J2g means "sum over all possible assignments to y". Although this operation works 
well in many cases, the worst case complexity can be exponential in the number of variables. 

Recently, Bryant and Chen[4] have developed a new representation for functions that 
map boolean vectors to integer values. This representation is called the Binary Moment 
Diagram (BMD) of the function. Instead of the Shannon expansion / = xfi + (1 — x)/0, 
they use the expansion f — fo + xf, where /' is equal to fi — fo- After merging the common 
subexpressions, a DAG representation for the function is obtained. They prove in their 
paper that this gives a compact representation for certain functions which have exponential 
size if represented by MTBDDs directly. 

There is a close relationship between this representation and the inverse Reed-Muller 
transformation [12]. The matrix for the inverse Reed-Muller transformation is defined re- 

cursively by 
o      -i o        I       ^n-l " I 
OO — 1 On —I c C 

\   — Jn-1      Jn-1   ) 

which has a linear MTBDD representation. Let i G Bn be the binary representation of 
integer 0 < i < 2n. A function f : Bn -^ N can be represented as a column vector 
where the value of the ith entry is f(i). We will not distinguish between a function and its 
corresponding column vector. The inverse Reed-Muller transformation can be obtained by 
multiplying the transformation matrix and the column vector / = S x / using the technique 
described in previous section. 

Theorem 1   The MTBDD of f is isomorphic to the BMD of f. 

Proof: The theorem is easy to prove by induction on the number of variables. 

Base Case: If the number of variables is 0, the function is a constant and f = f. Both the 
MTBDD of / and the BMD for / are terminal nodes and therefore isomorphic. 

Induction Step: Let / : Bn -> N. The roots of both the BMD for / and the MTBDD 
for / are xn. The left child of the root of the BMD for / is the BMD for f\Xn=0, while 
the right child is the BMD for f\Xn=i - f\Xn=o- When / is represented as a column vector, 



the upper half is f\Xn=o and the bottom half is f\Xn=i- The inverse Reed-Muller matrix is 

I       ™_1      _,        ]. The result of the transformation is therefore: 
\   — <->n-l     <->n-l   / 

/     Sn-1 0       \   x   / /|,B=0  \  =   / S„-l  X /|,B=0 \ 
\   —'S'n-l     -^n-l   / V /la;n=1   / \  ^n-1  X (/l^n=l - f\x„=o)  ) 

If this vector is represented by MTBDD, the left child is the MTBDD for the inverse Reed- 
Muller transform of f\Xn=o and the right child is the MTBDD for the inverse Reed-Muller 
transform of f\Xn-i — f\x„=o- By induction hypothesis, both children are isomorphic to the 
children of the root of the BMD for /. Therefore the BMD of / is isomorphic to the MTBDD 

for /. □ 

The inverse Reed-Muller matrix can be represented as the Kronecker product [2] of n 

identical 2x2 matrices: 

The inverse Reed-Muller transformation is not unique in this respect. Other transfor- 
mations that are defined as Kronecker products of 2 x 2 matrices may also provide concise 
representations for functions mapping boolean vectors into integers. In fact, the Kronecker 
product of any non-singular 2x2 matrices can be used as a transformation matrix and will 
produce a canonical representation for the function. Moreover, if the transformation matrix 
is a Kronecker product of different 2x2 matrices, we still have a canonical representation of 
the function. We call transformations obtained from such matrices hybrid transformations. 

A similar strategy has been tried by Becker [10]. However, his technique only works 
for the boolean domain. When using his technique, all of the transformation matrices, the 
original function and the resulting function must have boolean values. Our technique, on 
the other hand, works over the integers. By allowing integer values, we can handle a wider 
range of functions. Moreover, we can obtain larger reduction factors since we have more 
choices for transformation matrices. 

We can apply this idea to reduce the size of the BDD representation of the functions. 
Since there is no known polynomial algorithm to find the hybrid Kronecker transformation 
that minimizes BDD size, we use a greedy algorithm to reduce the size. If we restrict the 
entries in the matrix to the set {0,1,-1}, then there are six matrices we can try. For 
each variable, we select the matrix that gives the smallest BDD size. The BDDs obtained 
from such transformations are called Hybrid Decision Diagrams (HDDs). We have tried this 
method on the ISCAS85 benchmark circuits. In some cases we have been able to reduce the 
size of the BDD representation by a factor of 1300. However, reductions of this magnitute 
usually occur when the original function has a bad variable ordering. If dynamic variable 
ordering is used, then our method gives a much smaller reduction factor. 



3.    The Logic 

Symbolic model checking techniques based on Binary Decision Diagrams (BDDs) have been 
successful in verifying control logic [5]. However, lack of proper representation for functions 
that map boolean vectors into integers has prevented this technique from being used for 
verifying arithmetic circuits. We have experimented with the different representations that 
are introduced in previous sections. Unfortunately, there are fundamental problems with 
applying either the MTBDD or the BDD array representations for verification of arithmetic 
circuits. For the functions that arise in this type of application, the number of possible values 
is exponential in the number of bits. Therefore, the MTBDDs also have exponential size. 
On the other hand, arithmetic operations on BDD arrays are very expensive. In particular, 
since the BDD size for the middle bit of a combinational multiplier is exponential in the 
length of its operands, the BDD array representation is exponential for multiplication. 

Bryant and Chen [4] have shown that the BMD gives a compact representation for certain 
functions that have exponential size MTBDDs. They have used this representation to verify 
the data paths of some arithmetic circuits. They are able to conclude that a circuit is correct 
if the BMDs for the circuit and the specification are exactly the same. However, depending 
on the implementation and the control logic, there can be cases in which the circuits are 
correct but the BMDs are not identical. Moreover, since their technique cannot handle 
inequalities, it is impossible to check some of the properties that are needed in order to 
avoid the Pentium error. 

We have used hybrid decision diagrams to represent the integer functions that occur in 
the arithmetic circuit verification. In particular, for the state variables corresponding to data 
bits, we use the inverse Reed-Muller transform while for the state variables corresponding to 
control signals, we use the identity transform. Therefore, for data variables, this representa- 
tion behaves like a BMD while for control variables, it behaves like a MTBDD. By using this 
representation, we are able to handle circuits with both control logic and wide data paths. 
Since this representation is a special case of the hybrid decision diagrams, all the algorithms 
mentioned in previous sections can be applied. 

By using this representation, we have extended the symbolic model checking system 
SMV [11] so that it can also handle properties involving relationships among data words. In 
the original SMV system, atomic formulas can only contain state variables. In the extended 
system, we allow atomic formulas be equations or inequalities between expressions as well. 
These expressions are represented as hybrid BDDs. The logic that we use is the follows: 

• Atomic propositions: Ap = {p\,... ,pk} 

• Propositional formulas: Prop ::= Ap | Prop A Prop | -'Prop 

• Words:   Word ::— (Prop, Prop,..., Prop) 

• Expressions: 
Exp ::= Constant |   Word | next(Word) | Exp © Exp | if SF then Exp else Exp, 

where 0 can be +, —, or x. 

• Atomic Formulas: AF ::= Ap \ {A | E}(Exp ~ Exp), where ~ can be =, <, or <. 
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• Static Formulas: SF ::= AF \ SF A SF | ^SF 

• Temporal Formulas: TF ::= SF | TF A TF | -TF | AXTF | {A | E}[TF U TF] 

A model is given by: 

• States: S = 2Ap. 

• Transition relation: R C S x 5 

• Initial states: So ^ S 

• Valuation mapping for atomic propositions V : Ap x S —> {0,1} 

The semantics for the logic is given by: 

• Propositional formula interpretation: P : Prop x S —* {0,1} 

P(Pi,s) = V(Pi,s);    P(/iA/2) = P(/ljS)AP(/2,s);    P(-^f,s) = ^P(f,s) 

• Word interpretation: W : PFOTY/ X 5 —> iV 

W((/o,/i,...,/„),3) = f:P(/i,a)2i 

• Expression interpretation: E : Exp xS xS —> A7. In the following, s' is needed because 
it is possible to have the next state value of a word in an expression. 

E{ex 0 e2, s, s') = E{eu s, s') 0 E(e2, s, s') 

E(ii f then ea else e2, s, 5') = if (5 |= /) then E(ei,s, s') else E(e2,6, s') 

E(next(u>),s,s') = W(w,s') 

• Atomic formula interpretation. Because of the nondeterministic behavior of the sys- 
tem, there can be more than one possible next state for a given state. Therefore, a 
path quantifier is needed in order to quantify over the next state that appears in the 
semantics of the expressions. 

s   \=Pi & V(pi,s) = 1 

s    \= A(ei ~ e2) <£> \/s'.R(s, s') ->• E(eu 5, s') ~ E(e2,5, s') 

s   \= E(ei ~ e2) <^ 3s'.i2(s,5') A E(eus,s') ~ E(e2,5,5') 

• The semantics of SF and TF are the same as in CTL. 

This logic can naturally be divided into three layers. The top layer contains atomic 
formulas, static formulas and temporal formulas. The second layer contains words and 
expressions. The third layer contains atomic propositions and propositional formulas. All 
of the objects in the top and bottom layers are boolean functions while the objects in the 
second layer are functions that map boolean vectors into the integers. Therefore, in the word 
level model checking system, all of atomic propositions, propositions, atomic formulas, static 
formulas and temporal formulas are represented as BDDs; while words and expressions are 
represented as hybrid decision diagrams. 



4.     Arithmetic operations on hybrid decision diagrams 

In order to be able to perform model checking on the logic discussed in the previous section, it 
is desirable to implement various operations on hybrid decision diagrams. We consider scalar 
multiplication, addition and multiplication of two functions, and the if-then-else operation. 
Although we only discuss a special kind of hybrid decision diagrams in this and the following 
section, similar algorithms exist for handling general hybrid decision diagrams as well. As 
discussed in the previous section, we use a uniform hybrid transformation for all functions. 
Let the transformation matrix be H. 

We use /' to denote the result after applying the hybrid transformation to a function /. 
Scalar multiplication is simple to perform. 

(c-f)' = Hx(c-f) = c(Hxf) = c-f 

Finding the sum of two function is also simple. 

{f + gy = Hx(f + g) = Hxf + Hxg = f' + g' 

Next, we consider how to perform multiplication. Let the top level variable is a?;. Suppose 

/' 

Figure 1: BDDs for /' and g 

(f-g)'i (f-9)'r 

(f-9)' 

Figure 2: BDD of (/ • g)' 

f, g' are shown in Figure 1, and the resulting function (/ • g)' is shown in Figure 2. There 
are two possibilities. If x,- is a control signal, the identity transformation is used at this level. 



Then 
(/ • 9)1 = (/ ■ 9)'U=o = (/U=o • <?U=o)' = (// • 9i)' 

(f ■ g)'r = (/ • </)'U=l  = (/Ui=l • 9\*,=l)' = (fr ■ 9r)' 

When Xi is a data bit, the inverse Reed-Muller transformation is used at this level. In this 
case, the computation is more complicated. 

U'9)'i   =   (f ■ 9)%t=o = (fU1=o ■ g\Xt=o)'= (fi ■ 9i)' 

U-g)'r = (f ■ g)'\^i - (f ■ 9)%,=o 

= (/U=i ■ g\xi=i) — (/Ui=o ■ ^1^=0) . 

=  (Ui + fr) ■ (gi + gr))'- (ft ■ gi)' 

=     (fr-gi)'+(fr9r)'+{fr-9r)' 

Since both (/ • g)[ and (/ • g)'r can be computed in term of (// • g\)', (// • gr)', (fr ■ gi)1, and 
(fr ' gr)', we can compute the transformation of the product in a recursive manner. If we 
store these intermediate results, the total number of recursive calls to compute (/ • g)' will 
be at most |/'||#'|. Because of the additions that are needed in the computation, the worst 
case complexity can still be exponential. However, in practice, this algorithm works quite 
well. 

Likewise, the recursive computation of the if-then-else operation can be given as follows. 
If the top variable Xj is a control signal, 

(if c then / else g)\ = (if C\X~Q then // else g{)' 

(if c then / else g)'r = (if c\Xi=1 then fr else gr)' 

When Xi is data bit, 

(if c then / else g)\ = (if c\Xi=0 then fi else g{)' 

(if c then / else g)'r = 

(if c\Xi=i then // else gi)' + (if c\Xi=1 then fr else gr)' - (if c\Xi=0 then // else g{)' 

5.     Equations and inequalities 

Model checking for word level properties also requires computing the set of assignments that 
satisfy /1 ~ /2, where ~ can be one of =, 7^, <, <, >, or >. Finding the set of assignments 
that satisfy an inequality can be reduced to the problem of finding the set of assignments that 
make a function / positive. Equations can be handled in a similar manner. A straightforward 
way of solving the problem is to convert / to an MTBDD and then pick the terminal nodes 
with the correct sign. However, this does not work very well in general, because some 
functions have MTBDDs with exponential size but hybrid BDDs of polynomial size. For 

example, let /x = Y4L0 x$ anc^ h — Ej=o Vj^j ■ ^otn °f these functions and their difference 
have linear size BMDs. The BDD for the set of assignments satisfying /1 - f2 > 0 also has 
linear size. But the MTBDD size for /1 - f2 is exponential. 

9 



We have developed an algorithm that can substantially reduce the cost for computing 
arithmetic relations between certain functions. Suppose that we want to compute the set 
of assignments that satisfies / > 0. Each branch in the hybrid decision diagram for / 
corresponds to a subset of variable assignments. If the maximum value of a branch is less 
than or equal to 0, then none of the assignments in this branch satisfy the inequality. If the 
minimum value of a branch is greater than 0, then all assignments in this branch satisfy the 
inequality. In both cases, we avoid checking the signs of the individual assignments in the 

branch. 

To obtain a good algorithm for this problem, it is important to be able to compute upper 
and lower bounds for a branch in an HDD. An algorithm for this purpose is given below. If 
the intermediate results are stored, the algorithm takes time linear in the number of HDD 

nodes. 

bound_values(f, upper,  lower) 
begin 

if(f is terminal node) 
upper = lower = f.value; 

if(Top level is BMD) 
lower = min(lower(left(f)), lower(left(f)) + lower(right(f))); 
upper = max(upper(left(f)), upper(left(f)) + upper(right(f))); 

else 
lower = min(lower(left(f)),  lower(right(f))); 
upper = max(upper(left(f)), upper(right(f))); 

end 

The improved algorithm for computing the BDD for the set of assignments that make the 
function / positive is given below. A similar algorithm is used to find the set of assignments 

that make a function zero. 

bdd greater_than_0(f) 
begin 

if(f is terminal node) 
if(f.value >  0)  return(True); 
else return(False); 

bound_values(f, upper, lower); 
if(upper <= 0) return(False); 
if(lower > 0)  return(True); 

left = greater_than_0(left(f)); 

if(top level is BMD) 
right = greater_than_0(left(f) + right(f)); 

else 
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right = greater_than_0(right(f)); 
return(hdd_if_then_else(level(f),  left,  right)); 

end 

The improved algorithm works extremely well for verification of arithmetic circuits. The 
following theorem guarantees the efficiency of this algorithm for the set of linear expressions. 
Most of the formulas that occur during the verification of the SRT division algorithm are 
in this class. These expressions have the form / = TZ=icifi, where /,- = YTj^Xifi3 f°r 

1 < i < m and the Cj's are integer constants. Suppose all variables are data variables, 
then the Hybrid Decision Diagrams are identical to BMDs. We use the variable ordering 

xin, x2n, • • ■, xmn, • ■ ■, «io, «20, • • •, xm0. Because f\Xij=i - f\Xij=o = eil3 is a constant, the 
HDD for / is shown in Figure 3. 

c   2 
2 

1 

n 

^     n 
c.2 

JL" 

^      n 
c„2 

*io) 

C2 

Xm0) 

Figure 3: BMD for YT=i *U 

Lemma 1 The number of recursive calls to the great er_than_0 procedure for computing 

the BDD for f at each level cannot exceed 4(X^i lci|)- 

Proof: Suppose we consider the recursive calls to the BMD nodes that has Xij as the top 
variable. The inverse transformation matrix for BMD nodes is the 2x2 Reed-Muller matrix 

I j. Thus, the recursive calls in the procedure greater_than_0 apply to either the left 

child or the sum of both children. The BMD nodes that are recursively called with Xij as top 
variable must be the sum of the sub-BMD in Figure 3 with top variable x^ and some of the 
right children of ancestors of the sub-BMD. The right children of all of the ancestor nodes 
of this sub-BMD are constant nodes with the value Ck2l where 1 < k < m and I > j. The 
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C 2J 

v<S= 

c   2J 

X      \ 

X 
20) c, 

c 
2 

/       \ 
d2j c 

Figure 4: BMD nodes explored at level x v 

sum of those right children can be rewritten in the form d2j where d is an integer constant. 
Therefore the BMD nodes with top variable Xij have the form shown in Figure 4. 

f Ck   ck > 0 ,   „ _ f 0     ei > 0 
1   0     otherwise fc ~~ | Ck   otherw: 

When we apply the procedure bouncLvalues to this BMD, the upper bound computed is 

equal to dV + £;=o E£Li 42' + E*U c'k2J ■ Tnis can be proved by induction on the structure 
of the BMD. The base case is trivial. For the induction step, consider the node with the 
variable x^. There are two cases. The first case is when i < m. In this case, by induction 
hypothesis, upper (left (f)) is equal to d2j + £/=o £™=1 c'k2

l + £™=i+1 c'k2
j. Since the right 

branch is a constant, upper (right (f)) is Cj2J. Therefore, 

upper   =   max(upper(left(f)), upper(left(f))+ upper(right(f))) 

=   upper(left(f)) + if upper(right(f)) >= 0 then upper(right(f)) else 0 
j—1   m m 

= d2j + E E42' + E 42i + (if °i>= °then ci else °)2i 

1=0 fc=l k=i+l 

j—1   m m 

= da? + E E 42' + E 4* + ^ 
j—1   m m 

= ^ + EE42' + E42J 

1=0 fc=l fc=i 

Similar proof can be obtained for the other case when i = m. In the same way, we are able to 
prove that the lower bound computed by the procedure is d2j + J2i=~o YX=i c'k^ + TX=i 4'2J- 
Hence 

j—1   m m 

upper   =   dy' + EE^' + E^" 
;=o k=l k=i 
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3      m 

/=0 k=l 
m 

= <&+E4(2,+1-i; 
m 

m 

= 2^ +2 £4) 
Jfc=l 

j—1   m m 

lower   =   dy + EE^' + Ec^' 

i      m 

> <# + £ E <4'a' 
/=0 k=l 
m 

= & + £ 4(2J+1 -1) 
fe=i 
m 

>   d2i + £4'2i+1 

fe=i 

=   2>(d +2 £4) 
fc=l 

If c? < —2 ^ZfcLi 4> then upper is negative or 0 and the algorithm will return constant 
false. Likewise, if d > — 2 XX=i 4> l°wer is positive and the algorithm will return constant 
true. Therefore, the recursive calls to the children can only occur when —2 J2T=i 4 < ^ ^ 
-2 ££=1 4'- Since d is integer, there can be at most 2 x (-2 £^=1 4 + 2 £^=1 4) = 4£^=1 |cfc| 
recursive calls. [ | 

Theorem 2   27ie complexity of greater_than_0 /or / is 0(n2 YX=i \ck\)- 

Proof: There are n levels. Each level takes 4£™=1 \ck\ recursive calls. Each recursive call 
takes time 0(n) to compute the upper and lower bound values. Therefore, the total time is 

0(n2E*Ul<*|).n 
In the case of linear inequalities, all the new BMDs that are generated have the form of 

c + g, where c is a constant and g is an existing BMD. If we remember the constant without 
actually adding it to the BMDs, we are able to avoid generating new BMD nodes. After 
introducing this technique, the complexity for compute great er_than_0(f) can be further 

reduced to 0(nYJk=i \ck\)- 

6.     Model Checking for Word Level Properties 

Model checking is a technique of finding the set of states in a state-transition graph where a 
given CTL formula is true. There is a program called EMC that solves this problem using 
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efficient graph-traversal techniques. If the model is represented as a state-transition graph, 
the complexity of the algorithm is linear in the size of the graph and in the length of the 
formula. The algorithm is quite fast in practice [6, 7]. However, an explosion in the size of 
the model may occur when the state-transition graph is extracted from a finite state concur- 
rent system that has many processes or components. In symbolic model checking systems [5], 
BDDs are used to represent the transition relations and sets of states. The model check- 
ing process is performed by fixpoint operations on these BDDs. By using symbolic model 
checking techniques, the size of the transition systems that can be verified has increased 
dramatically. Although such techniques have been successful in verifying control logic, they 
cannot be directly used for verifying arithmetic circuits. This is because expressions that 
involve words with integer values cannot be handled properly. 

Now that we are able to handle arithmetic operations and arithmetic relations, it is 
possible to extend the symbolic model checking algorithm so that it can handle word level 
properties. BDDs for the transition relation and all propositions are generated in exactly the 
same way as in the original symbolic model checking system. The hybrid decision diagram 
representation of a word (f0, /i, • ■ • ? fn) can be computed as 

n 

2(if /.• then 2{ else 0) 

using the operations mentioned above. Although this process is exponential in the worst 
case, it works fairly well in practice. The hybrid decision diagram representation of most 
expressions can be computed using the techniques discussed above. The only exception 
is the next operation, which can be performed by variable substitution. The substitution 
replaces all of the current state variables in the hybrid decision diagram for the word by their 
corresponding next state variables. The algorithm to obtain the BDD representing the set of 
variable assignments that make an algebraic relation true can be used to compute the BDD 
for atomic formulas. After the BDD representation for the atomic formulas is generated, 
the BDDs for static formulas and temporal formulas are computed in the same way as in 
ordinary model checking. In particular, the fixpoint computations are exactly the same in 
both cases. 

Since we have used the same algorithm to compute the transition relation as in the 
ordinary model checking algorithm. The word level model checking algorithm does not work 
well when the transition relation does not have a concise representation. As an example, 
let's consider a multiplier. Let x and y be the input registers and z be the output register. 
Suppose the transition relation can be represented as follows: 

Tr(x,y,z) = Tr'(x,y) A (next(z) = x x y) 

Obviously, the BDD representation of the transition relation has exponential size since 
the BDD representation of the middle bit of a multiplier is exponential. This problem can 
sometimes be avoided by conjunctive decomposition of the transition relation. Let x,y, and 
z be the state variables that encode the current state value of x,y and z, respectively. Let 
x',y', and z' be the state variables that encode the next state value of x,y and z. Suppose 
that we want to verify a word level property of the form f(x,y, z). There may be appearances 
of next(z); if so, we can replace them by x x y at the word level and obtain a new formula. 
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Hopefully, the resulting formula will be independent of z and the BDD representation of the 
formula can be denoted as f'(x,y). In this case, we can use Tr' as the transition relation to 
perform the fixpoint operations. Even if /' depends on some bits of z, we can often obtain 
a much simpler transition relation by eliminating the conjuncts that give the values of bits 

that are not needed. 

7.    Verification of an SRT radix 4 division circuit 

By using the word level model checking system, we have successfully verified circuits for 
division and square root computation that are based on the SRT algorithm used by the 
Pentium. We are able to handle both the control logic and the data paths. The division 
circuit that we investigated has 5 states, idle, init, loop, last and rem. The state transition 
graph for these states are shown in Figure 5. This circuit can perform two different operations 

Figure 5: The controlling states for the division circuit 

division and remainder. When the operation is division, the steps in the computation are 

idle —> init —> loop* —> last —» idle 

When the operation is remainder, the steps are 

idle —► init —>• loop * —> last —> rem —> idle 

Figure 6 gives the data path of the circuit at loop state. All the words have 70 bits. However, 
only leading bits of the partial remainder and multiples of divisor are used to compute the 
quotient digit for the next cycle. 
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Figure 6: The data path for the division circuit at loop state 

We have verified the circuit with both control logic and the data path. All states of the 
finite state machine have been checked. Let r be partial remainder, q be quotient, d be the 
divisor. We have checked the properties 

• The expression r -\- q • d always equals the dividend. 

• The computation does not overflow. This is guaranteed by ■|d<r<|d. 

For example, we have proved that at init state, the remainder is the dividend and the 
quotient is zero. Therefore, the initial value for r + q • d equals the dividend. Moreover, the 
inequality mentioned above holds at the init state. 

SPEC AG(state = init -> r = dividend & q = 0) 

SPEC AG(state = init ->   (-8)  * d <= 3 * r <= 8 * d) 
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4 f 

1.000 __  __ 

1.001 — — 

1.010 — — 

1.011 — — 

1.100 — — 

1.101 __ — 

1.110  2 
1.111  2 

gl  (remainder — first 7 bits) 

g3 010101010101010101010101 

g4 001100110011001100110011 
g5 111100001111000011110000 
g6 000011111111000000001111 
g7 111111111111000000000000 

 2-2-2 A -1 -1 0 0 1 1 2 2 2   
 2-2-2 B -1 -1 0 0 1 1 C 2 2 2  
 2-2-2-2-1-1 D 0 0 1 1 1 2 2 2 2  
 2-2-2-2 B -1 -1 D 0 0 1 1 1 2 2 2 2  
 2-2-2-2-1-1-1 0 0 0 E 1 1 C 2 2 2 2  
-2-2-2-2-2-1-1-1 0 0 0 0 1 1 1 2 2 2 2 2   
-2-2-2-2 B -1 -1 -1 0 0 0 0 1 1 1 2 2 2 2 2  
-2-2-2-2-1-1-1-1 0 0 0 0 1 1 1 1 2 2 2 2 2 — 

(divisor -- first 4 bits) A = -(2 - g2 * gl) 
B = -(2 - g2) 
C = 1 + g2 
D = -(1 - g2) 
E = g2 

Table 1: The quotient prediction table for the division circuit 

We have also proved that the inequality always holds in the loop states, and that r + q-d 
is invariant with respect to left shifting. 

SPEC AG(state = loop -> A[((-8)  * d <= 3 * r <= 8 * d)  U state = last]) 

SPEC AG((state = loop &  ((-8)  * d <= 3 * r <= 8 * d)) 
-> A((r + q * r)   * 4 = next(r + q * r))) 

The above properties are sufficient to guarantee that in the loop state, r + q-d always equals 
the dividend after left shifting. Similar properties are proved for the last and rem states. In 
addition, we have verified a circuit for computing square roots. The total number of state 
variables for the circuit that we verify exceeds 600 (which is much larger than any circuit 
previously checked by SMV). 

8.     Directions of Future Research 

We have verified a floating point division circuit based on the SRT algorithm using the word 
level model checker. We plan to experiment on more circuits. Possible applications include 
the floating point multiplier, floating addition, etc. 
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Our algorithm for solving arithmetic relations works extremely well for linear equations 
and inequalities. Although the current algorithm can handle some nonlinear equations and 
inequalities as well, it may be possible to extend this algorithm or to find a new algorithm 
that can handle more complicated nonlinear equations and inequalities. 

There is still one problem with this technique. It can only be used for circuits that 
maintain the exact value of the data. When rounding occurs, the functions become less 
regular and the size of hybrid BDD representation is likely to explode. In these cases, the 
new value obtained after rounding can be described by a system of inequalities, and the 
verification process reduces to solving such systems. In another research project, we have 
built a theorem prover based on symbolic computation system Mathematica. The theorem 
prover is called Analytica [9] and is quite good at handling equations and inequalities. We 
believe that after some modification, Analytica will be useful for solving the inequalities that 
arise because of rounding in computer arithmetic. 
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